

利用相位解卷绕法修正SPR相位解调的研究

朱云浩¹, 胡淼森¹, 邓硕¹, 袁继宪², 吕海飞¹, 黎敏^{1*} ¹武汉理工大学理学院, 湖北武汉 430070; ²梁园区科学技术局科学技术情报研究所, 河南 商丘 476000

摘要相位型表面等离子体共振(SPR)技术具有极高的检测灵敏度。然而,理论求解SPR信号的相位差时通常会出现 相位跳变的情况,致使理论与实验结果不能直接对应,需要人为修正。提出一种新的相位求解方法——相位解卷绕法, 通过不同厚度金膜修正前后的SPR相位差的计算结果与实验结果对比表明:相位解卷绕法修正后的解调结果不再出现 相位跳变现象;且相位差变化量随金膜厚度的增加呈先增加后减少的趋势,即存在一个对应于相位差极大值的最佳金膜 厚度。相位解卷绕法解决了SPR相位解调中的相位跳变问题,使理论计算能直接对应实验结果。

关键词 表面等离子体共振;相位解调;相位解卷绕法;干涉测量;金膜 中图分类号 O436 文献标志码 A

DOI: 10.3788/AOS230827

1引言

表面等离子体共振(SPR)技术具有灵敏度高、响 应速度快、测量结果稳定等优点,因此被广泛应用于生 物医学、纳米材料检测等领域[1-4]。根据信号调制方法 的不同,SPR传感器分为强度调制型、波长调制型、角 度调制型和相位调制型^[59]。强度调制型结构简单,但 检测精度相对较低,抗干扰能力差。波长调制型检测 精度较高,适用于光纤型和波导型SPR传感器,但对 光源和探测器要求较高。角度调制型动态范围大,适 用于棱镜型 SPR 传感器,但对角度调节装置的精度要 求高。相位调制型 SPR 虽然系统结构相对复杂,但具 有更高的灵敏度。当发生 SPR 效应时, p 偏振光的相 位在共振角附近变化非常大,通常其检测灵敏度比其 他类型 SPR 传感器高 2~3个数量级^[10-11]。然而,已有 的文献报道显示在计算棱镜结构SPR的相位灵敏度 时,所带入的相位差值通常存在跳变,而据此求解得到 的最大灵敏度在实际测量中是无法实现的[12-13]。进一 步研究分析表明,出现跳变的原因是在计算相位差时, 求解相位角的辐角函数返回值处于[-π,π]之间。当 某一角度对应的相位值无限趋近-π时,下一个角度 对应的相位结果就会跳变到π附近,致使前后两个角 度对应的相位值差距增大,即所谓"相位跳变",该过程 称为相位卷绕。若用发生跳变的相位结果求解相位灵 敏度,就会获得一个异常大的值3.6×10⁶(°)/RIU(折 射率单元)^[12-13],正好对应2π的相位变化。而其入射角 度 对 应 求 解 的 相 位 灵 敏 度 实 际 最 高 为 1.8× 10⁶ (°)/RIU。因此,文献中选用相位跳变处的相位差 计算得到的相位灵敏度会比真实结果高一倍。

在求解相位角过程中,本文引入相位解卷绕函数^[14],解决了相位跳变问题,修正了3种不同厚度金膜的相位差计算结果;并优化基于马赫-曾德尔干涉(MZI)的SPR相位解调方法,实验验证了相位解卷绕法的正确性。

2 SPR相位信号的解调原理与相位解卷绕法

SPR 传感结构如图 1 所示。由棱镜、金属薄膜和 介质构成的 3 层 Kretschmann 结构的 SPR 模型中,反 射率 R、反射相位 Ø 可表示为

$$R_{m} = |r_{m}|^{2} = \left| \frac{r_{a}^{m} + r_{12}^{m} \exp(2ik_{z1}d)}{1 + r_{a}^{m}r_{12}^{m} \exp(2ik_{z1}d)} \right|^{2}, \quad (1)$$

(2)

$$\phi_{m} = \arg(r_{m}) = \\ \tan^{-1} \left[\frac{r_{12}(1 - r_{01}^{2})\sin(2k_{z1}d)}{r_{01}(1 + r_{12}^{2}) + r_{12}(1 + r_{01}^{2})\cos(2k_{z1}d)} \right],$$

式中:0、1和2分别为棱镜、金属和介质层;m为p偏振 光或s偏振光;r^m为入射光的p偏振分量或s偏振分量 在相邻两层介质i和j界面上的反射系数,如r^b₀即p偏 振光在棱镜-金属界面的反射系数;r¹₁₂为s偏振光在金 属-介质界面的反射系数;k₁为入射光波矢在金属层的 z方向波矢分量;d为金属薄膜厚度。对p偏振光而言,

通信作者: *minli@whut.edu.cn

收稿日期: 2023-04-17; 修回日期: 2023-05-06; 录用日期: 2023-05-31; 网络首发日期: 2023-06-10

基金项目: 国家自然科学基金(11974266,62075174)

研究论文

第 43 卷 第 20 期/2023 年 10 月/光学学报

r^m_{ii}可表示为

$$r_{ij}^{p} = \frac{\varepsilon_{i}k_{zj} - \varepsilon_{j}k_{zi}}{\varepsilon_{i}k_{zi} + \varepsilon_{j}k_{zi}},$$
(3)

式中: ϵ 为介电常数; k_z 为入射光波矢在z方向上的分量。对s偏振光而言,则有

$$r_{ij}^{s} = \frac{k_{zj} - k_{zi}}{k_{zj} + k_{zi}},$$
(4)

其中,kzi可表示为

$$k_{zi} = \frac{\omega}{c} \sqrt{\varepsilon_i - \varepsilon_0 \sin^2 \theta} , \qquad (5)$$

式中: ω 为入射光频率;c为真空中的光速; θ 为入射角度; ϵ_0 为棱镜介电常数。入射光波矢在x方向的分量 k_{x0} 可表示为

$$k_{x0} = \frac{\omega}{c} \sqrt{\varepsilon_0} \sin \theta_0 \tag{6}$$

在透明介质中,根据麦克斯韦方程组有 $\epsilon_0 = n_0^2$, $\epsilon_2 = n_2^2, \epsilon_2$ 为介质介电常数, n_0 为棱镜折射率, n_2 为介质 折射率。

将式(3)~式(6)代入式(2),则可以计算出p偏振 光和s偏振光之间的相位差为

$$\Delta \phi = \phi_{\rm p} - \phi_{\rm so} \tag{7}$$

直接采用辐角函数求解 SPR 相位时,其得到的相位值位于[-π,π]区间,当真实的相位值超出这个区间时,则会出现相位跳变的结果。因此,需要采用相位解卷绕法修正由此产生的相位跳变问题。相位解卷绕法的基本思路为:根据相位的连续性,通过比较辐角函数计算结果中两个相邻相位的值来判断相位卷绕的位

置,并对此卷绕点采用相位解卷绕函数进行解卷绕的 处理。具体流程如图2所示,实现过程如下:按前后顺 序比较全部相位值,当两个相邻相位值之间差值的绝 对值大于 π 时进行判断,如果 $\phi_{q+1} - \phi_q > \pi$,则q点之 后的相位值均减去 2π ,即

 $\phi_{\kappa}' = \phi_{\kappa} - 2\pi, \ \kappa = q+1, \ \cdots, \ n_{\circ} \tag{8}$

若 $\phi_{q+1} - \phi_q < -\pi$,则 q 点之后的相位值均加 上 2π ,即

 $\phi'_{\kappa} = \phi_{\kappa} + 2\pi, \kappa = q + 1, ..., n,$ (9) 式中:q,q+1分别对应相位卷绕前后的两个角度;n为 计算范围内的角度最大值; $\phi_{\kappa},\phi'_{\kappa}$ 分别为相位解卷绕处 理前后的相位值。当所有的相位值依次进行该处理 后,相位解卷绕流程结束,即可得到连续的相位结果。

图 1 SPR 传感结构 Fig. 1 SPR sensing structure

图 2 相位解卷绕流程图 Fig. 2 Flow chart of phase unwrapping

设光源波长为 632.8 nm, 棱镜折射率 n_0 为 1.516, 金膜的介电常数 ϵ_1 由椭偏仪 (M-2000V, Woollam) 测

得为-11.2006+1.3688i,介质为空气,折射率 n₂= 1.003。将上述条件代入式(2)~式(9)中,计算得到不

研究论文

第 43 卷 第 20 期/2023 年 10 月/光学学报

同厚度金膜对应的相位差随入射角度变化的关系曲线 如图3所示。

根据已有的相位型 SPR 传感系统的文献,在求解 相位时常用的辐角函数的相位计算结果处于[-π,π]区 间,如图 3(a)所示。当金膜的厚度小于 50 nm 时(SPR 效应最佳厚度区域),相位差曲线存在相位跳变(图 3 中 矩形标记曲线和圆形标记曲线)。此时,无论厚度如何 变化,相位差最大值始终为2π,这意味着此处的相位差 与厚度无关,即出现相位卷绕问题,需要补偿辐角函数 产生的2π跳变相位。采用相位解卷绕函数计算相位可 以修正辐角函数产生的跳变,获得连续的相位差曲线。 图3(b)为解卷绕函数求解得到的相位差与角度的关系 曲线。由图3(b)可知,采用解卷绕函数计算后随着角 度的增加相位差连续变化,突变消失。

图 3 不同金膜厚度对应的相位差与入射角度关系曲线。(a)辐角函数计算结果;(b)解卷绕函数计算结果 Fig. 3 Curves of phase difference to incident angle for different gold film thicknesses. (a) Calculation results using the argument function; (b) calculation results using the unwrapping function

在使用辐角函数的计算结果求解Kretschmann型 SPR的相位灵敏度时,相位差与入射角度对应关系的 计算结果如图4(a)所示。由图4(a)可知,入射角为 43.46°时激发 SPR 现象,相应的相位差变化量为 179.73°。以厚度为49.6 nm的金膜为例,分别采用基 于辐角函数(图4(a)虚线框中的菱形线)和解卷绕函数(图4(a)虚线框中圆形线)计算对应于SPR激发处的相位差。采用两种解调算法获得的相位差最大值与 厚度的关系曲线如图4(b)所示。不难发现基于辐角 函数的解调算法求得相位差的最大值为对应π-(-π)

图4 相位差随金膜厚度变化的理论曲线。(a)49.6 nm金膜相位差计算结果;(b)相位差极大值随厚度变化关系曲线 Fig. 4 Theoretical curve of phase difference as a function of gold film thickness. (a) Calculation results of phase difference for a 49.6 nm gold film; (b) relation curve between maximum phase difference and thickness variation

研究论文

的结果2π;而采用解卷绕函数求解得到的相位差呈现 连续变化,且随金膜厚度增加而呈先增大后减小的趋势。金膜厚度为49.6 nm时,对应的相位差极大值为 196.26°。修正后的结果显示存在对应于SPR的相位 差极大值,即灵敏度最高的最佳金膜厚度。

当工作波长变化时,考虑金膜的色散,即金膜介电 常数与入射光的波长相关,发现最佳金膜厚度随入射 光的波长变化而变化如图5所示。由图5可知,在不同 波长下金膜的最佳厚度不同,且随着入射光波长的增 大,最佳金膜厚度在逐渐减小。

3 实验系统

3.1 实验装置

为了验证相位解卷绕算法求解 SPR 相位差的准确性,基于 MZI的 SPR 相位检测系统测量了 3 个不同厚度的金膜样品如图 6 所示。波长为 632.8 nm 的氦 氖激光器发出的光经过偏振片后,由分束棱镜 BS1 分成两束线偏光,透射的一路光经 SPR 棱镜反射进入合束棱镜 BS3,为信号光。分束棱镜 BS1 反射的一路光,被分束棱镜 BS2 反射后,到达压电陶瓷(PZT)反射镜,反射后再次通过分束棱镜 BS2 透射,到达合束棱镜

图5 最佳金膜厚度与人射光波长的关系

BS3,称为参考光。最终,信号光与参考光在合束棱镜 BS3处发生干涉。因为相互垂直的偏振态之间不能产 生干涉,所以信号光中的p或s偏振光仅与参考光中的 p或s偏振光发生干涉。偏振分束棱镜PBS按偏振态 将干涉光分为p偏振相干光和s偏振相干光,分别被光 电探测器PD1和PD2接收,然后经过采集卡(DAQ)和 计算机(PC)将输出电信号进行模数转换和信号处理 后,得到待测相位差值。

图 6 MZI的 SPR 相位检测系统 Fig. 6 SPR phase detection system based on MZI

3.2 相位差信号的解调

相位信号的解调和相位差求解流程如图7所示。 探测器采集的信号中包含高斯白噪声和由探测器与采 集卡共同引入的基带噪声。因此,信号需经过多次平 均和小波去噪等处理之后,得到较为平滑的干涉信号, 便于进行进一步的相位解调。 由于p光和s光所经历的光路损耗不同,导致两干 涉信号的幅值差异较大。通过归一化处理,将两路信 号转换为标准正弦信号后,通过反正弦相位提取法得 到p光和s光的相位差。反正弦相位提取法的具体原 理为:设信号光路和参考光路的光程分别为L₁和L₂, PZT 未运动时参考路的光程为L₂₀。PZT 运动引起的

图 7 相位差求解流程图 Fig. 7 Flowchart for phase difference calculation

参考路光程随三角波频率变换的函数L(f)可表示为

$$L(f) = K \left(1 - \left| 2ft - 1 - 2N \right| \right), \tag{10}$$

式中:f为三角波频率;N为t时刻已经完整经历的周期数;K为最大位移值。随着PZT运动,参考路光程可 表示为

$$L_2 = L_{20} + L(f)_0 \tag{11}$$

合束棱镜BS3处信号光光强可表示为

$$\begin{cases} I_{\rm sprp} = A \cos \left(2\pi\nu t + \phi_{\rm p} + 2\pi \frac{L_1}{\lambda} + 2\pi \frac{L}{\lambda} + \phi_{\rm noise} \right) \\ I_{\rm sprs} = A \cos \left(2\pi\nu t + \phi_{\rm s} + 2\pi \frac{L_1}{\lambda} + 2\pi \frac{L}{\lambda} + \phi_{\rm noise} \right), (12) \end{cases}$$

式中:A为光波的振幅;v为光波的频率; λ为光波的波

长; *q*_{noise} 为光波的噪声相位。参考光光强可表示为

$$\begin{cases} I_{\text{refp}} = A \cos \left(2\pi\nu t + 2\pi \frac{L_2}{\lambda} + 2\pi \frac{L}{\lambda} + \phi_{\text{noise}} \right) \\ I_{\text{refs}} = A \cos \left(2\pi\nu t + 2\pi \frac{L_2}{\lambda} + 2\pi \frac{L}{\lambda} + \phi_{\text{noise}} \right)^{\circ} \end{cases}$$
(13)

此时,p和s偏振光在合束棱镜BS3处的参考光与 信号光分别发生干涉。因为不同偏振态之间不会发生 干涉,所以干涉信号可表示为

$$I = I_{\rm spr} + I_{\rm ref} + I_{\rm int}, \qquad (14)$$

式中:*I*_{spr}、*I*_{ref}、*I*_{int}分别为p或s偏振的信号光、参考光和 干涉光强;光频v的范围为10¹³~10¹⁴ Hz,远超探测器 响应范围,因此探测器探测到的p偏振光干涉信号和s 偏振光干涉信号可表示为

$$I_{\text{int p}} = B \cos \left[-2\pi \frac{L(f)}{\lambda} + 2\pi \frac{L_1 - L_{20}}{\lambda} + \phi_p + \phi_{\text{noise}} \right] + C,$$

$$I_{\text{int s}} = B \cos \left[-2\pi \frac{L(f)}{\lambda} + 2\pi \frac{L_1 - L_{20}}{\lambda} + \phi_s + \phi_{\text{noise}} \right] + D,$$
(15)

式中:B为干涉后光波的振幅;C、D为光频直流信号的 常数。式(15)经过归一化获得标准正弦信号并对其进 行反正弦运算,最后对反正弦结果求差,可得到相位 差为

$$\Delta \phi = \left[-2\pi \frac{L(f)}{\lambda} + 2\pi \frac{L_1 - L_{20}}{\lambda} + \phi_p + \phi_{\text{noise}} \right] - \left[-2\pi \frac{L(f)}{\lambda} + 2\pi \frac{L_1 - L_{20}}{\lambda} + \phi_s + \phi_{\text{noise}} \right] = \phi_p - \phi_{so}$$
(16)

采用反正弦相位提取法进行相位差的求解,并与 过零比较法^[15]对比,相位差计算结果如表1所示。由 表1可知,对相同的入射角反正弦法求解结果的波动 性更小,结果较为稳定。

4 实验结果与讨论

采用图 6 的实验系统,测量了 3 种厚度金膜的 SPR 共振角及其对应的相位差值。金膜厚度利用台 阶仪(Alpha-Step D-300)测得,3个金膜样品的厚度分 别为 36.58 nm、45.43 nm 和 62.86 nm。图 8(a)~图 8 (c)分别为 3 种厚度的金膜在 SPR 实验中所引入相位

表1 反正弦法和过零比较法相位差计算结果 Table 1 Results of phase difference calculation using the arcsine method and zero-crossing comparison method

Incident angle / (°)	Phase difference /(°)	
	Arcsine method	Zero-crossing comparison method
43.40	87.46	87.37
	87.44	88.47
	87.44	89.05
	87.43	88.93
	87.45	88.58

差的测量值与理论计算结果的对比。由图 8 可知,在 SPR 共振角度附近,厚度为 36.58 nm、45.43 nm、 62.86 nm 金膜所对应的相位差极大值分别为 117.38°、258.29°、42.72°,且不同厚度金膜的相位差 实验结果与理论计算曲线的变化趋势一致。结合图 3(b)可知,随着金膜厚度增大,p光和s光对应的相位 差极大值均呈先增大后减小的趋势。根据测量值与 理论值的偏差计算公式 $\delta = |\phi_{\rm E} - \phi_{\rm T}|/\Delta\phi_{\rm TMAX}(\phi_{\rm E})$ 实验测量相位差, ϕ_{T} 为理论计算相位差, $\Delta\phi_{TMAX}$ 为理论计算相位差最大值),得到3种厚度金膜相位差实

验结果与理论计算的偏差值分别为 3.34%、4.91% 和 2.53%。

图 8 不同厚度金膜相位差-角度关系实验测量与理论计算结果。(a) 36.58 nm 厚金膜;(b) 45.43 nm 厚金膜;(c) 62.86 nm 厚金膜 Fig. 8 Experimental measurements and theoretical calculation of phase difference-angle relationships for gold films of different thicknesses. (a) 36.58 nm gold film; (b) 45.43 nm gold film; (c) 62.86 nm gold film

所用相位型 SPR 实验系统测量值和理论计算值的偏差主要来自以下几个方面:

1)偏振分束棱镜消光不完全。实验中所采用的偏 振分束棱镜的消光比较低,不能完全消光。其中,p偏 振光和 s 偏振光的消光比分别为 30 dB 和 20 dB (1000:1和100:1),这意味着探测器所接收到的两束 光并不是理想的完全p偏振干涉光或完全s偏振干涉 光,因此,解调得到的两路正弦信号也不是完全的p偏 振干涉正弦信号或s偏振干涉正弦信号。以厚度 62.86 nm的金膜测量结果为例,设偏振分束棱镜为理 想分束(即消光比∞)和p/s偏振光的消光比分别为 30 dB/20 dB 两种情况,则对应的相位差的理论极大值 将由40.35°变成39.91°,相位偏差约0.44°(对应的相 位差的理论最大值由 226.10°变成 223.65°, 偏差 2.45°;最小值由185.75°变成183.74°,偏差2.01°)。 因此,本工作根据偏振分束棱镜消光比的实测值对理 论计算进行修正。但由于存在测量误差,修正后的相 位差计算值与测量结果仍会存在一定偏差。

2)PZT的非线性迟滞效应引入噪声。由于PZT 器件固有的非线性迟滞效应——即在驱动PZT的三 角波信号的上升沿与下降沿时间内,PZT均发生对应 于驱动电压的非线性位移,且上升沿与下降沿曲线不 重合。由于存在非线性迟滞效应,虽然设置的采样点 位置相同,但滤波后所得到的干涉信号仍不是标准的 正弦信号。对信号进行归一化处理会在p和s偏振干涉正弦信号中引入额外的附加相位,导致实验结果的偏差,估算 PZT 非线性迟滞效应引入的偏差约为1.47°。

3) SPR 入射角度调节引起反射光线偏离光轴问题。当调节图 6 中的 SPR 棱镜转台的角度,即 SPR 入 射角改变 Δθ时, SPR 棱镜的反射光以 2Δθ输出到合束 棱镜 BS3,导致信号光光轴与棱镜 BS3光轴产生微小 夹角,p、s偏振干涉光均引入额外附加相位,最终引入 解调获得的相位偏差值。仍以厚度为 62.86 nm 金膜 对应的相位差的理论极大值为例,在共振角附近, SPR 入射角变化 1°所引入的相位差极大值变化为 0.09°。

4) 膜片厚度不均匀。实验所用的金膜样品采用磁 控溅射法镀膜,由于样品表面与金靶面存在一定夹角, 使镀制的金膜片厚度分布不均匀。另一方面,探测光 束的直径约为1 mm,光斑照射到金膜样品上的位置随 机,则对应厚度与台阶仪的测量值有偏差,导致理论计 算的金膜厚度与实际测量样品的厚度有偏差,则引入 对应的相位差计算结果与测量结果的偏差。厚度偏差 为 0.1 nm 在 SPR 共振角附近引入的相位差偏差约为 0.12°。

综上,偏振分束棱镜的消光比和PZT的非线性迟滞效应是产生相位型SPR实验误差的主要因素,在高精度的测量中需进一步优化。

5 结 论

针对相位调制型 SPR 传感系统在相位解调过程 中存在的相位差跳变问题,在解调中引入相位解卷绕 函数计算相位差,消除了相位差的跳变,解调算法得到 优化。基于此算法,采用基于 MZI 结构的相位测量系 统,测量了3种不同厚度金膜的相位差。理论计算和 实验结果显示,SPR 共振过程中的相位差是连续变化 的;在 SPR 共振角附近,随着金膜厚度的增加,相位差 变化量的极大值呈先增大后减小的趋势,存在一个对 应于变化量最大值(即灵敏度极大)的最佳厚度。所提 的通过相位解卷绕修正的 SPR 相位差解调方法可以 获得准确的相位差信息,为相位型 SPR 传感提供优化 的解决方案。

参考文献

- Pandey P S, Raghuwanshi S K, Shadab A, et al. SPR based biosensing chip for COVID-19 diagnosis-a review[J]. IEEE Sensors Journal, 2022, 22(14): 13800-13810.
- [2] Alharbi R, Irannejad M, Yavuz M. A short review on the role of the metal-graphene hybrid nanostructure in promoting the localized surface plasmon resonance sensor performance[J]. Sensors, 2019, 19(4): 862-876.
- [3] Kaushik S, Tiwari U K, Deep A, et al. Two-dimensional transition metal dichalcogenides assisted biofunctionalized optical fiber SPR biosensor for efficient and rapid detection of bovine serum albumin[J]. Scientific Reports, 2019, 9: 6987.
- [4] 何剑涛, 吕且妮, 张明娣, 等. 基于 SPR 和干涉模式复合增强 窄带钙钛矿光电探测器[J]. 中国激光, 2022, 49(23): 2304004.
 He J T, Lü Q N, Zhang M D, et al. Narrow-band perovskite photodetector based on SPR and interference mode composite enhancement[J]. Chinese Journal of Lasers, 2022, 49(23): 2304004.
- [5] 宓云軿.表面等离子体共振(SPR)检测仪器设计与实现[D].杭州:浙江大学,2007:25-26.

Mi Y P. Design and implementation of surface plasmon resonance (SPR) detection instrument[D]. Hangzhou: Zhejiang

University, 2007: 25-26.

- [6] Lee J Y, Tsai S K. Measurement of refractive index variation of liquids by surface plasmon resonance and wavelength-modulated heterodyne interferometry[J]. Optics Communications, 2011, 284(4): 925-929.
- [7] Saha S B, Mehan N, Sreenivas K, et al. Temperature dependent optical properties of (002) oriented ZnO thin film using surface plasmon resonance[J]. Applied Physics Letters, 2009, 95(7): 071106.
- [8] Huang Y H, Ho H P, Wu S Y, et al. Phase sensitive SPR sensor for wide dynamic range detection[J]. Optics Letters, 2011, 36(20): 4092-4094.
- [9] 王畅,王雪,孙旭晴,等.基于物镜耦合的波长-角度共同调制表面等离激元共振传感器[J].光学学报,2021,41(17):1724001.
 Wang C, Wang X, Sun X Q, et al. Objective-coupled wavelength and angle co-modulated surface plasmon resonance sensor[J]. Acta Optica Sinica, 2021, 41(17):1724001.
- [10] Wu S Y, Ho H P. Single-beam self-referenced phase-sensitive surface plasmon resonance sensor with high detection resolution [J]. Chinese Optics Letters, 2008, 6(3): 176-178.
- [11] 马金英,刘铁根,江俊峰,等.光纤表面等离子体共振传感灵 敏度提高研究进展[J].中国激光,2021,48(19):1906002.
 Ma J Y, Liu T G, Jiang J F, et al. Progress in sensitivity enhancement for optical fibre surface plasmon resonance sensing [J]. Chinese Journal of Lasers, 2021, 48(19): 1906002.
- [12] Han L, Ding H F, Landry N N A, et al. Highly sensitive SPR sensor based on Ag-ITO-BlueP/TMDCs-graphene heterostructure[J]. Plasmonics, 2020, 15(5): 1489-1498.
- [13] Han L, Chen Z X, Huang T Y, et al. Sensitivity enhancement of Ag-ITO-TMDCs-graphene nanostructure based on surface plasmon resonance biosensors[J]. Plasmonics, 2020, 15(3): 693-701.
- [14] 张冰,王葵如,颜玢玢,等.基于双波长和3×3光纤耦合器的 干涉测量相位解卷绕方法[J].光学学报,2018,38(4):0412004. Zhang B, Wang K R, Yan F F, et al. Phase unwrapping method based on dual wavelength and 3 × 3 fiber coupler with interferometric measurement[J]. Acta Optica Sinica, 2018, 38 (4):0412004.
- [15] Molinaro A, Sergeyev Y D. An efficient algorithm for the zero crossing detection in digitized measurement signal[J]. Measurement, 2001, 30(3): 187-196.

Phase Demodulation Correction of Surface Plasmon Resonance Based on Phase Unwrapping Method

Zhu Yunhao¹, Hu Miaosen¹, Deng Shuo¹, Yuan Jixian², Lü Haifei¹, Li Min^{1*}

¹School of Science, Wuhan University of Technology, Wuhan 430070, Hubei, China;

²Liangyuan District Institute of Science and Technology Information, Shangqiu 476000, Henan, China

Abstract

Objective Surface plasmon resonance (SPR) technology features high sensitivity, fast response speed, and stable measurement results, and is widely applied in the fields such as biomedical and nanomaterials detection. According to the signal modulation methods, SPR sensors are classified into four types of intensity modulation, wavelength modulation, angle modulation, and phase modulation. Compared with other modulation methods, phase modulation SPR has higher sensitivity. When SPR occurs, the phase of the p-polarized light changes greatly near the resonance angle, and its detection sensitivity is usually two-three orders of magnitude higher than that of other types of SPR sensors. However,

previous literature reported phase jumps in the calculated phase sensitivity of prism-structure SPR, and the maximum sensitivity obtained from this calculation is not achievable in practical measurements. Further research and analysis prove that the appearance of jumps is due to the utilization of the arctangent function in calculating the phase angle. When the phase value of an angle infinitely approaches $-\pi$, the subsequent angle's phase result jumps to π , which causes an increase in the phase differences between the two angles and the occurrence of phase jumps. We solve the phase jumps by introducing the phase unwrapping function during calculating the phase angle and correct the calculation results of the phase difference of three gold films with different thicknesses. At the same time, the SPR phase demodulation method based on the Mach-Zehnder interferometer is optimized, and the correctness of the phase unwrapping method is expected to provide an optimized solution for the design of phase-type SPR sensors.

Methods We propose a phase unwrapping function to solve phase jumps. The basic idea is to employ phase continuity to determine the location of the phase wrap by comparing the values of two adjacent phases in the calculated phase function results, and then adopt the phase unwrapping function to unwrap the phase at the wrap point. After all the phase values are processed in this way, the phase unwrapping process is completed, and continuous phase results can be obtained. Next, a Mach-Zehnder interferometric SPR phase measurement system is designed, in which the interference light paths are divided into a signal path and a reference path. The signal path includes an SPR prism which is rotated by a stepper motor to change the incident angle. In the reference path, modulation is introduced through a piezoelectric ceramic to allow interference between the signal light and reference light at the beam splitter prism. The p and s polarized lights are then separated by a polarizing beam splitter prism, and the signal is processed on a computer to obtain the measured phase differences. In signal processing, the wavelet filtering method is introduced to filter non-standard sinusoidal interference signals, and then the phase difference is calculated by the arcsine function phase extraction method.

Results and Discussions The phase unwrapping method is leveraged to obtain continuous SPR phase results without 360° phase jumps as the incident angle increases (Fig. 3b). With the increasing thickness, the maximum value of the phase difference shows a trend of increasing first and then decreasing (Fig. 4b), which indicates the existence of an optimal gold film thickness for maximizing the sensitivity of the phase-type SPR. Considering the dispersion of the gold film, the optimal gold film thickness is inferred to decrease gradually as the incident light wavelength increases (Fig. 5). The arcsine phase extraction method is adopted to demodulate the SPR phase, with stable demodulation results (Table 1). Finally, after the interferometric SPR phase measurement system is employed, the SPR phase differences for gold films with thicknesses of 36.58 nm, 45.43 nm, and 62.86 nm are 117.38°, 258.29°, and 42.72° respectively near the SPR resonance angle. Additionally, the experimental results of the phase differences for different thicknesses of the gold films are consistent with the trend of the theoretical calculation curve. The experimental results also verify the theoretical calculation accuracy of the SPR phase differences through the phase unwrapping method.

Conclusions We address the phase discontinuity in phase modulation-based SPR sensing systems during phase demodulation by introducing a phase unwrapping function to calculate the phase differences and eliminate phase jumps. Based on this optimized demodulation algorithm, the phase differences of three different thicknesses of gold films are measured with a Mach-Zehnder interferometric SPR phase measurement system. Both theoretical calculations and experimental results show that the phase differences during SPR change continuously. Near the SPR angle, the maximum change in phase difference presents a trend of first increasing and then decreasing with rising gold film thicknesses, which indicates an optimal thickness corresponding to the maximum sensitivity change. The proposed SPR phase difference demodulation method using phase unwrapping correction provides an accurate solution for phase-based SPR sensing.

Key words surface plasmon resonance; phase demodulation; phase unwrapping method; interferometry; gold film